

Dehnungsaufnehmer für zyklische Messungen mit integriertem Messverstärker und Tariereingang

Bauform

X-106

Kurze Ausführung mit vier Lochbohrungen

 $70 \times 25 \times 17$ mm, 4x M6, 0...50 μm/m, 0...100 μm/m, 0...250 μm/m, 0...360 μm/m, 0...500 μm/m

Eigenschaften

- Analoger Signalweg mit schneller Reaktionszeit für zyklische Anwendungen
- Für zyklische Anwendungen mit externem Reset-, bzw. Tara-Steuerungseingang für automatischen Nullpunktabgleich, geeignet für periodische Nullpunktabgleichvorgänge (Prozesstara)
- · Dauerhafte Speicherung des Nullpunktabgleich auch bei Spannungsausfall, ohne Begrenzung der Tariervorgänge
- Mit integriertem Messverstärker mit wahlweise ± 10 V oder 4-20 mA als Ausgangssignal

Anwendung

Zyklische Anwendungen beschreiben wiederkehrende, schnelle Kraftzyklen wie sie beispielsweise bei Pressen vorzufinden sind. Bei zyklischen Applikationen ist es wichtig, dass in regelmässigen Abständen der Nullpunkt tariert wird, um ein Driften des Messsignals auszuschliessen. Durch den Digitaleingang kann der Nullpunktabgleich bequem über die Steuerung eingelernt werden.

Die Dehnungssensoren können für folgende Anwendungen verwendet werden:

- Überwachung und Dokumentation von Prozesskräften für erhöhte Prozesssicherheit (z.B. Pressen, Schweiss- und Clinchzangen, Biegemaschinen)
- Grenzwertüberwachung zur Vermeidung von Überlasten
- Regelungen von Haltekräfte

Die Nullpunkteinstellung erfolgt durch einen digitalen Nullpunkt-Justiermechanismus und wird dauerhaft und unverlierbar gespeichert. Es steht ein nichtflüchtiger, stabiler Nullpunkt unabhängig der Zykluszeiten bereit. Daher sind diese Messverstärker sowohl für alle dynamischen als auch statische Anwendungen geeignet. Sie können in allen Anwendungen verwendet werden, die einen periodischen Prozess-Tara oder eine einmalige Installations-Tara erfordern.

Bestellbezeichnung

Anschluss / Kraftart	Messbereich	0-10 V	4-20 mA	4-12-20 mA (Nullpunkt bei 12 mA)
X-106 mit M12-Anschluss				
Signal positiv auf Zug	050 μm/m	X-106-80-M12-1-50Z	X-106-81-M12-1-50Z	X-106-84-M12-1-50Z
	0100 μm/m	X-106-80-M12-1-100Z	X-106-81-M12-1-100Z	X-106-84-M12-1-100Z
	0250 μm/m	X-106-80-M12-1-250Z	X-106-81-M12-1-250Z	X-106-84-M12-1-250Z
	0360 µm/m	X-106-80-M12-1-360Z	X-106-81-M12-1-360Z	X-106-84-M12-1-360Z
	0500 μm/m	X-106-80-M12-1-500Z	X-106-81-M12-1-500Z	X-106-84-M12-1-500Z
Signal positiv auf Druck	050 μm/m	X-106-80-M12-1-50D	X-106-81-M12-1-50D	X-106-84-M12-1-50D
	0100 μm/m	X-106-80-M12-1-100D	X-106-81-M12-1-100D	X-106-84-M12-1-100D
	0250 μm/m	X-106-80-M12-1-250D	X-106-81-M12-1-250D	X-106-84-M12-1-250D
	0360 µm/m	X-106-80-M12-1-360D	X-106-81-M12-1-360D	X-106-84-M12-1-360D
	0500 μm/m	X-106-80-M12-1-500D	X-106-81-M12-1-500D	X-106-84-M12-1-500D

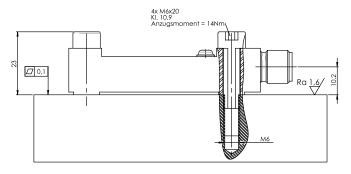
Dehnungsaufnehmer X-106-8

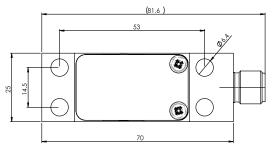
70 x 25 x 17 mm, 4x M6, Bis 500 μm/m

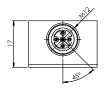
Spezifikationen

Performance	
Messbereich / Nenndehnung	050 μm/m
	0100 μm/m
	0250 μm/m
	0360 μm/m
	0500 μm/m
Auflösung, analoger Signalpfad	1/5000
Linearität	< 0.3 % vom
	Endwert
Hysterese	< 0.3 % vom
	Endwert
Wiederholbarkeit bei Neueinbau	Typ. 1 %, max 2 %
Grenzfrequenz	5000 Hz (-3dB)

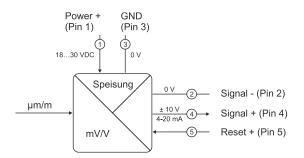
Elektrische Daten	
Speisespannung	1830 VDC,
	< 50 mA
Ausgangssignal auf den Endwert bezogen	± 10 V / 4-20 mA /
	4-12-20 mA
Ausgangssignal Max im Überlastbereich	± 11.5 V / 1.5-23
	mA


Externer Nullpunktabgleich	
Messmodus	< 3 V oder offen
Nullpunktabgleich	833 V
Minimale Pulslänge	0.5 ms
Gesamtdauer Nullpunktanpassung	5 ms
Tarierbarer Bereich	200 % vom Endwert
Maximale Anzahl an Tariervorgänge	Unbegrenzt


Materialien		
Sensor Grundkörper	Stahl	
	(TK 11.1 ppm / °C)	
Gewicht	110 gr	


Mechanische Daten	
Wechsellastfestigkeit (90 %)	10^8 Zyklen
Elektrischer Anschluss	M12-Stecker, 5
	polig, male

Umgebungsdaten	
Umgebungstemperatur	-1065 °C
EMV Prüfung	IEC 61000-4-5,
	Performance A
Shock und Vibration	EN60068-2-6/27
Schutzart	IP 64


Mechanische Abmessungen

Blockschaltbild

Anschlussbelegung

Pinbelegung	X-106-8
PIN 1	Power +
PIN 2	Signal -
PIN 3	0V (GND)
PIN 4	Signal + (10 V / 420 mA / 4-12-20 mA)
PIN 5	Reset-Nullpunkt

Bestellinformation

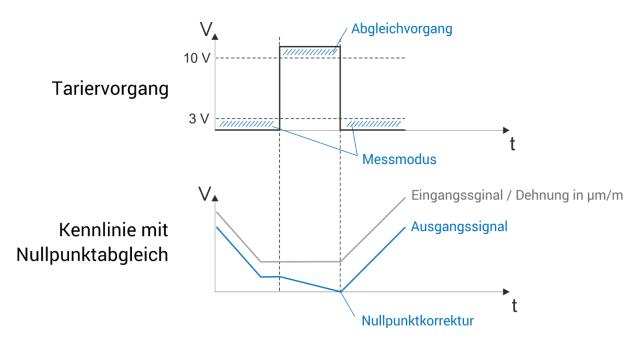
Der Dehnungsaufnehmer wird ohne Befestigungsschrauben geliefert.

Detaillierte Bestellangaben siehe Seite 2.

Dehnungsaufnehmer X-106 Version 2.1 www.x-sensors.com info@x-sensors.com Tel. +41 52 543 19 60

Nullpunktabgleich

Die Nullpunkteinstellung bei diesen Messverstärkern erfolgt durch einen digitalen Nullpunkt-Justiermechanismus. Die Nullpunkteinstellung wird dauerhaft gespeichert. Das heisst, die Nullpunktkorrektur liegt auch nach einem Stromunterbruch noch vor.


Die Anzahl der Nullpunkt-Tariervorgänge ist unbegrenzt. Daher sind diese Messverstärker sowohl für dynamische als auch statische Anwendungen geeignet. Sie können in allen Anwendungen verwendet werden, die einen periodischen Prozesstara oder einmaligen Installationstara erfordern.

Der Tariermechanismus zur Anpassung des Nullpunkts ist mit einer "Active Low" und "Active High" Logik verfügbar.

Folgende Kennwerte sind für den externen Nullpunktabgleich zu beachten.

Externer Nullpunktabgleich "Active Low"		"Active High"
Messmodus	833 V oder offen	< 3 V oder offen
Nullpunktabgleich	< 3 V	833 V
Minimale Pulslänge	0.5 ms	0.5 ms

Das folgende Schaubild beschreibt das Verhalten der Dehnungsaufnehmer in Abhängigkeit des Reseteingangs:

Dehnungsaufnehmer X-106 Version 2.1 www.x-sensors.com info@x-sensors.com Tel. +41 52 543 19 60

Montagehinweise

Die Dehnungsaufnehmer sollen auf einer bearbeiteten Oberfläche mit einer minimalen Güte von N9 und einer maximalen Unebenheit von 0,5 mm angebracht werden. Für das Anzugsmoment müssen die folgenden Kennwerte beachtet werden. Es sind Schrauben der Festigkeitsklasse 10.9 oder 12.9 zu bevorzugen. Das Montagegewinde sollte eine ähnliche Festigkeit aufweisen.

Schrauben	Anzugsmoment Festigkeitsklasse 10.9	Anzugsmoment Festigkeitsklasse 12.9
X-106 4x M6	14 Nm	18 Nm

Beachten Sie auch die separat erhältliche Montageanweisung. Damit kann der Nullpunktversatz beim Anziehen der Schrauben minimal gehalten werden.

Folgen Sie den folgenden Schritte für eine optimale Monage:

- 1. Lochbild gemäss Einbauzeichnung/Bohrlehre erstellen.
- 2. Entfernen Sie allfällig vorhandene Farbschichten.
- 3. Kontrollieren Sie mit Kippbewegungen, ob die Auflägefläche plan ist.
- 4. Bei deutlich spürbaren Kippbewegungen schleifen Sie die Auflageflächen nach, bis der Sensor praktisch spielfrei aufliegt.
- 5. Schrauben Sie nun den Sensor fest, indem Sie die Schrauben übers Kreuz schrittweise immer mehr festziehen.
- Ziehen Sie die Schrauben mit den definierten Anzugsmomenten fest.

Definition der Genauigkeitsangabe

Bei Dehnungsaufnehmern gibt es folgende Punkte bezüglich der Genauigkeit zu beachten:

1. Linearität und Hysterese

Die Linearität und Hysterese spezifiziert die Messabweichung im Vergleich zur idealen BFSL-Kennlinie. Diese maximale Messabweichung wird in der Regel auf den Endwert bezogen angegeben. D.h. zum Beispiel eine Ungenauigkeit von 0.5~% FS entspricht bei einem Dehnungsaufnehmer mit einem Messbereich von $0...250~\mu\text{m/m}$ einer maximalen Messabweichung von $1.25~\mu\text{m/m}$ über den gesamten Messbereich.

2. Wiederholbarkeit Wiedereinbau

Der Kraftschluss zwischen Dehnungsaufnehmer und dem Maschinenbauteil variiert von Montage zu Montage. Dadurch verschieben sich der Nullpunkt und die Spanne von Einbau zu Einbau. Der Nullpunkt kann mittels dem internen und externen Nullpunktabgleich leicht wegtariert werden. Die Spanne kann durch Anfahren des Endwertes ebenfalls ermittelt werden. Dies ist jedoch nicht immer möglich, wodurch hier ein zusätzlicher Fehler auftreten kann. Diese Messabweichung wird bei X-Sensors durch die Angabe "Wiederholbarkeit bei Neueinbau" spezifiziert.