

Inline Messverstärker für Kraft - und Dehnungssensoren auf DMS-Basis

X-201-IN09

Inlinegehäuse

Messverstärker mit gleichzeitig 4...20 mA und 0...10 V Analogausgang Digitaler Nullpunktabgleich per externem Steuerungssignal oder Onboard-Taster

Funktionen

- Dauerhafte Speicherung des Nullpunktabgleich auch bei Spannungsausfall, ohne Begrenzung der Tariervorgänge
- Großer Eingangsbereich von 1.0 mV/V bis 4.0 mV/V für universellen Anschluss von Dehnungs-, Kraft- und Gewichtssensoren mit DMS-Vollbrücke
- Analoger Signalweg mit grosser Bandbreite und schneller Ansprechzeit

Anwendung

Die Messverstärker von X-Sensors eignen sich zur universellen Signalaufbereitung von Kraft- und Dehnungssensoren mit DMS-Vollbrücken.

Die Nullpunkteinstellung erfolgt durch einen digitalen Nullpunkt-Justiermechanismus und wird dauerhaft und unverlierbar gespeichert. Es steht ein nichtflüchtiger, stabiler Nullpunkt unabhängig der Zykluszeiten bereit. Daher sind diese Messverstärker sowohl für alle dynamischen als auch statische Anwendungen geeignet. Sie können in allen Anwendungen verwendet werden, die einen periodischen Prozess-Tara oder eine einmalige Installations-Tara erfordern.

Der Anschluss an einen Sensor und an die Steuerung kann wahlweise über Klemmen oder über einen M12-Stecker/-Buchse erfolgen.

Bestellbezeichnung

Bezeichnung	Eingangs- empfindlichkeit	Ausgangs- signal	Merkmal	Spezifikationen
X-201-IN09-x-M12-3-M12-1	01.0 mV/V 01.25 mV/V 01.5 mV/V 02.0 mV/V 03.0 mV/V 04.0 mV/V	010 V 420 mA (gleichzeitig)	Inlinegehäuse, Alu Sensorseitig: M12, 5pol. Steuerungsseitig: M12, 8pol.	Seite 3
X-201-IN09-x-KL-3-M12-1	01.0 mV/V 01.25 mV/V 01.5 mV/V 02.0 mV/V 03.0 mV/V 04.0 mV/V	010 V 420 mA (gleichzeitig)	Inlinegehäuse, Alu Sensorseitig: Schraubklemme Steuerungsseitig: M12, 8pol.	Seite 4

Zubehör (Kabel Messverstärker – Steuerung)

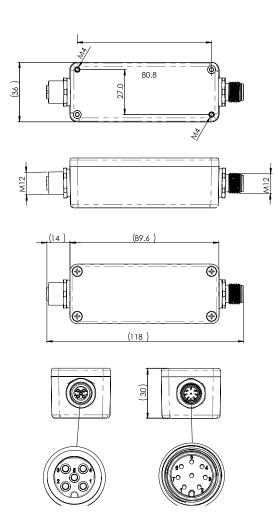
Bezeichnung	Material	Länge	Anschluss Messverstärker	Anschluss Steuerung	Anschlussbelegung
Kabel 2 m - M12F8p - OL-8p - PUR	PUR, halogenfrei, geschirmt 8x 0.25 mm²	2.0 m	M12A, 8 Pol, Buchse	offene Litzen	1
Kabel 5 m - M12F8p - OL-8p - PUR	PUR, halogenfrei, geschirmt 8x 0.25 mm²	5.0 m	M12A, 8 Pol, Buchse	offene Litzen	1
Kabel 10 m - M12F8p - OL-8p - PUR	PUR, halogenfrei, geschirmt 8x 0.25 mm²	10.0 m	M12A, 8 Pol, Buchse	offene Litzen	1

X-201-IN09-x-M12-3-M12-1

Mit M12-Buchse (Sensor) und M12-Stecker (Steuerung)

Spezifikationen

Performance	
Empfindlichkeit	01.0 mV/V
	01.25 mV/V
	01.5 mV/V
	02.0 mV/V
	03.0 mV/V
	04.0 mV/V
Linearität	< 0.01 % vom
	Endwert
Nullpunkt Temperaturkoeffizient	< 0.01 % / °C
Bandbreite	DC5kHz (-3dB)
Signalpfad	Rein analog


Elektrische Daten	
Speisespannung	1830 VDC, <60mA
Ausgangssignal auf den Endwert bezogen	± 10V / 4-20 mA
Ausgangssignal Max im Überlastbereich	± 14.5V / 0-25 mA
Anschlusswiderstand DMS-Messbrücke	4V: 12010kΩ 8V: 35010kΩ

Externer Nullpunktabgleich	
Messmodus	<3V oder offen
Nullpunktabgleich	830 V
Galvanische Trennung zur Speisung	< 50 V
Minimale Pulslänge	0.5 ms
Gesamter Abgleichvorgang	5 ms
Tarierbereich	±2.0 mV/V
Maximale Anzahl an Tariervorgängen	Unbegrenzt

Mechanische Daten	
Material	Aluminium
Elektrischer Anschluss Sensor	M12-Buchse (5 polig, A-Kodiert, female)
Elektrischer Anschluss Steuerung	M12-Stecker (8 polig, A-Kodiert, male)
Montage 2x M4-Senkschr. (27x 80.8mm)	Gewindetiefe: 6 mm

Umgebungsdaten	
Umgebungstemperatur	0+70 °C
Lagertemperatur	-40+85 °C
EMV Prüfung	EN 61000-4
Schutzart	IP 67

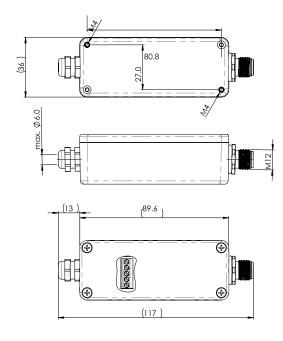
Mechanische Abmessungen

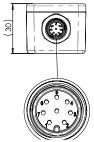
X-201-IN09-x-KL-3-M12-1

Mit Schraubklemme (Sensor) und M12-Stecker (Steuerung)

Spezifikationen

Performance	
Empfindlichkeit	01.0 mV/V
	01.25 mV/V
	01.5 mV/V
	02.0 mV/V
	03.0 mV/V
	04.0 mV/V
Linearität	< 0.01 % vom
	Endwert
Nullpunkt Temperaturkoeffizient	< 0.01 % / °C
Bandbreite	DC5kHz (-3dB)
Signalpfad	Rein analog


Elektrische Daten	
Speisespannung	1830 VDC, <60mA
Ausgangssignal auf den Endwert bezogen	± 10V / 4-20 mA
Ausgangssignal Max im Überlastbereich	± 14.5V / 0-25 mA
Anschlusswiderstand DMS-Messbrücke	4V: 12010kΩ 8V: 35010kΩ

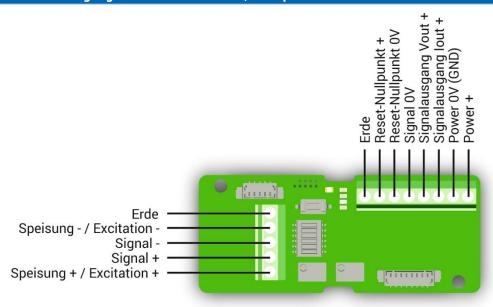

Externer Nullpunktabgleich	
Messmodus	<3V oder offen
Nullpunktabgleich	830 V
Galvanische Trennung zur Speisung	< 50 V
Minimale Pulslänge	0.5 ms
Gesamter Abgleichvorgang	5 ms
Tarierbereich	±2.0 mV/V
Maximale Anzahl an Tariervorgängen	Unbegrenzt

Mechanische Daten	
Material	Aluminium
Elektrischer Anschluss Sensor	Klemmen für Kabelanschluss
Elektrischer Anschluss Steuerung	M12-Stecker (8 polig, A-Kodiert, male)
Montage 2x M4-Senkschr. (27x 80.8mm)	Gewindetiefe: 6 mm

Umgebungsdaten	
Umgebungstemperatur	0+70 °C
Lagertemperatur	-40+85 °C
EMV Prüfung	EN 61000-4
Schutzart	IP 67

Mechanische Abmessungen

Anschlussbelegung M12


Sensorseitig Einbaubuchse M12, 5 polig, female

Pin	Funktion	
1	Speisung + / Excitation +	
2	Signal +	
3	Signal -	
4	4 Speisung - / Excitation -	
5	5 Gehäuse / Erde	
Pin 5 muss nicht zwingend beschaltet werden.		

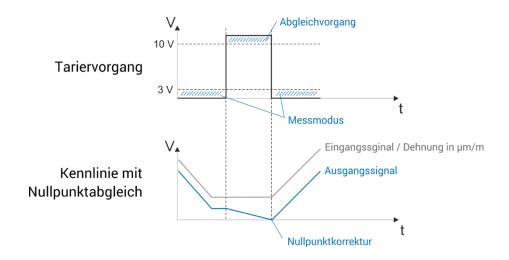
Steuerungsseitig Einbaustecker M12, 8 polig, male

Pin	Funktion	
1	Power +	
2	Gehäuse / Erde	
3	Reset-Nullpunkt 0V	
4	Reset-Nullpunkt +	
5	Signalausgang Vout + (± 10 V)	
6	Power 0V (GND)	
7	Signal 0V	
8	Signalausgang lout + (4-20 mA)	
Pin 6 und 7 sind galvanisch verbunden		

Anschlussbelegung der Schraubklemmen, Aderquerschnitt: 1.5 mm²

Nullpunktabgleich "Steuerungseingang"

Die Nullpunkteinstellung bei diesen Messverstärkern erfolgt durch einen digitalen Nullpunkt-Justiermechanismus. Die Nullpunkteinstellung wird dauerhaft gespeichert. Das heisst, die Nullpunktkorrektur liegt auch nach einem Stromunterbruch noch vor.

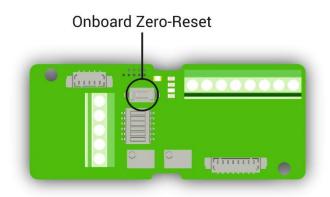

Die Anzahl der Nullpunkt-Tariervorgänge ist unbegrenzt. Daher sind diese Messverstärker sowohl für dynamische als auch statische Anwendungen geeignet. Sie können in allen Anwendungen verwendet werden, die einen periodischen Prozesstara oder einmaligen Installationstara erfordern.

Der Tariermechanismus zur Anpassung des Nullpunkts ist mit einer "Active Low" und "Active High" Logik verfügbar.

Folgende Kennwerte sind für den externen Nullpunktabgleich zu beachten:

Externer Nullpunktabgleich	Active Low	Active High
Messmodus	> 10 V oder offen	< 3 V oder offen
Nullpunktabgleich	< 3 V	> 10 V
Minimale Pulslänge	0.5 ms	0.5 ms

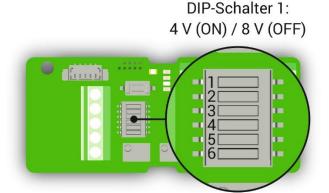
Das folgende Schaubild beschreibt das Verhalten der Messverstärker in Abhängigkeit des Reseteingangs:



Nullpunktabgleich "Onboard"

Der Nullpunkt kann mittels einem Tastendruck eingelernt werden.

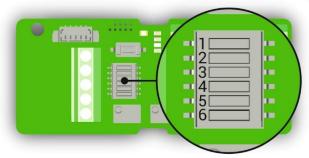
Der Nullpunktabgleich wird vorgenommen, solange der Zero-Button gedrückt wird. Das Ausgangssignal wird in diesem Moment auf Null gesetzt.


Die über den Tastendruck «Zero» eingelernte Nullpunktkorrektur wird immer unverlierbar als Installationstara gespeichert. Das heisst, die Nullpunktkorrektur liegt auch nach einem Stromunterbruch noch vor.

Brückenspeisung

Die Brückenspeisung kann mittels den entsprechenden DIP-Schaltern auf 4 V und 8 V gesetzt werden. Dabei gilt: Niederohmige Sensoren sollen mit 4 V, hochohmige Sensoren dagegen mit 8 V gespiesen werden. Um die Eigenerwärmung möglichst niedrig zu halten, soll im Zweifelsfall immer die niedrigere Speisespannung gewählt werden.

Brückenspeisung			
DIP-Schalter	Spannung	Brücken- widerstand	Werks- einstellung
SW 1 ON	4 V DC	12010 kΩ	Default
SW 1 OFF	8 V DC	35010 kΩ	-



Konfiguration Stromausgang

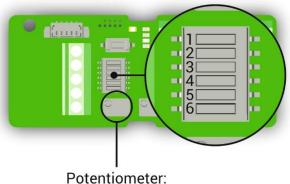
Der Stromausgang kann mittels einem DIP-Schalter zwischen 4...20 mA und 0...20 mA konfiguriert werden.

Konfiguration Stromausgang mit DIP-Schaltern			
DIP-Schalter	Stromausgang	Werkseinstellung	
SW 6 ON	420 mA	Default	
SW 6 OFF	020 mA	-	

DIP-Schalter 6: 0 mA (OFF) / 4 mA (ON)

Werkseinstellung / Einstellung Eingangsempfindlichkeit

Der Messverstärker weist ab Werk eine voreingestellte Eingangsempfindlichkeit auf. Mit den DIP-Schaltern und dem Potentiometer kann die Eingangsempfindlichkeit in weiten Bereichen nach Bedarf eingestellt werden. Beachten Sie aber, dass dadurch die werksseitige Kalibrierung verloren geht.


Für die Brückenspeisung gilt: Niederohmige Sensoren sollen mit 4 V, hochohmige Sensoren dagegen mit 8 V gespiesen werden. Um die Eigenerwärmung möglichst niedrig zu halten, soll im Zweifelsfall immer die niedrigere Speisespannung gewählt werden.

Folgende Bereiche können mittels den DIP-Schaltern ausgewählt werden:

SW 1 (Speisung)	SW 2 (RG100)	SW 3 (RG200)	SW 4 (RG400)	SW 5 (RG1200)	Eingangsempfindlichkeit
ON (4V)	OFF	OFF	OFF	ON	00.6 bis 01.8 mV/V
ON (4V)	OFF	ON	ON	OFF	01.2 bis 03.6 mV/V
ON (4V)	OFF	OFF	ON	OFF	01.8 bis 05.4 mV/V
OFF (8V)	OFF	OFF	OFF	ON	00.3 bis 00.9 mV/V
OFF (8V)	OFF	ON	ON	OFF	00.6 bis 01.8 mV/V
OFF (8V)	OFF	OFF	ON	OFF	00.9 bis 02.7 mV/V
OFF (8V)	OFF	ON	OFF	OFF	01.8 bis 05.4 mV/V

Der Feinjustierung des Endwertes kann mit einem Potentiometer vorgenommen werden. Vergleichen Sie hierzu den mittels einem DMS-Simulator simulierten Endwert. Durch drehen des Potentiometers können Sie den Endwert auf den gewünschten Wert einstellen.

DIP-Schalter 1-6: Grobeinstellung Empfindlichkeit

Feinjustage Empfindlichkeit

Ausgangssignal

Der Messverstärker bietet gleichzeitig zwei kalibrierte Signalausgänge, einen Spannungsausgang und einen Stromausgang. Die Beziehung zwischen Strom- und Spannungsausgang ist dabei so festgelegt, dass der Stromausgang 100% ausgesteuert wird, wenn auch der Spannungsausgang zu 100% ausgesteuert ist.

Uout 0...10 V = Iout 0...20 mA (bzw. 4...20 mA)