

S-Type Wägezelle XTC – Messungen von statischen Lasten

Innengewinde zur Krafteinleitung

XTC

63.5 x 50.8 x 19.1 mm - M8x1.25

0...10 kg

0...20 kg

0...30 kg

0...50 kg

0...75 kg

XTC

76.2 x 50.8 x 25.4 mm - M12 x 1.75

0...750 ka

0...1000 kg

0...1500 kg

XTC

76.2 x 50.8 x 25.4 mm - M12 x 1.75

0...100 kg

0...200 kg

0...250 kg

0...300 kg

0...500 kg

XTC

108 x 76.2 x 25.4 mm - M18 x 1.5

0...2000 kg

0...2500 kg

0...3000 kg

0...5000 kg

Eigenschaften

- S-Type Bauform
- Zwei Innengewinde für die Krafteinleitung
- · Gekapselte Ausführung IP65
- · Messbereiche von 10 kg bis 5000 kg

Anwendung

Der S-förmige Zug- und Druckkraftaufnehmer eignet sich hervorragend für Kraftmessung von statischen Lasten mit hohem Ausgangssignal. Er zeichnet sich vor allem durch hervorragende Linearität und Stabilität aus.

Die Krafteinleitung findet über die zwei Innengewinde des Typ-S Kraftsensor statt, so kann die Wägezelle sowohl als Druckkraft- oder als Zugkraftsensor eingesetzt werden. Das massive Stahlgehäuse und die S-Type Bauform nach IP65 garantieren einen problemlosen Betrieb des Kraftsensors, auch unter erschwerten Umweltbedingungen.

Bestellbezeichnung

Bezeichnung	Messbereich	Ausgangssignal	Kraftaufnahme	Spezifikationen
XTC-10kg-3.0m-D-T-0	010 kg	2.0 mV/V	M8x1.25	Seite 3
XTC-20kg-3.0m-D-T-0	020 kg	2.0 mV/V	M8x1.25	Seite 3
XTC-30kg-3.0m-D-T-0	030 kg	2.0 mV/V	M8x1.25	Seite 3
XTC-50kg-3.0m-D-T-0	050 kg	2.0 mV/V	M8x1.25	Seite 3
XTC-75kg-3.0m-D-T-0	075 kg	2.0 mV/V	M8x1.25	Seite 3

Bezeichnung	Messbereich	Ausgangssignal	Kraftaufnahme	Spezifikationen
XTC-100kg-3.0m-D-U-0	0100 kg	2.0 mV/V	M12x1.75	Seite 4
XTC-200kg-3.0m-D-U-0	0200 kg	2.0 mV/V	M12x1.75	Seite 4
XTC-250kg-3.0m-D-U-0	0250 kg	2.0 mV/V	M12x1.75	Seite 4
XTC-300kg-3.0m-D-U-0	0300 kg	2.0 mV/V	M12x1.75	Seite 4
XTC-500kg-3.0m-D-U-0	0500 kg	2.0 mV/V	M12x1.75	Seite 4

Bezeichnung	Messbereich	Ausgangssignal	Kraftaufnahme	Spezifikationen
XTC-750kg-3.0m-D-U-0	0750 kg	2.0 mV/V	M12x1.75	Seite 5
XTC-1000kg-3.0m-D-U-0	01000 kg	2.0 mV/V	M12x1.75	Seite 5
XTC-1500kg-3.0m-D-U-0	01500 kg	2.0 mV/V	M12x1.75	Seite 5

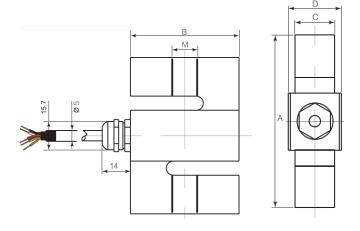
Bezeichnung	Messbereich	Ausgangssignal	Kraftaufnahme	Spezifikationen
XTC-2000kg-3.0m-D-V-0	02000 kg	2.0 mV/V	M18x1.5	Seite 6
XTC-2500kg-3.0m-D-V-0	02500 kg	2.0 mV/V	M18x1.5	Seite 6
XTC-3000kg-3.0m-D-V-0	03000 kg	2.0 mV/V	M18x1.5	Seite 6
XTC-5000kg-3.0m-D-V-0	05000 kg	2.0 mV/V	M18x1.5	Seite 6

63.5 x 50.8 x 19.1 mm

10 ... 75 kg

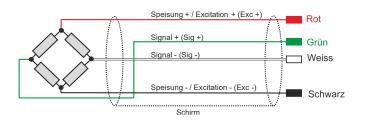
Spezifikationen

Performance	
Messbereich / Ausgangssignal	010 kg/2.0 mV/V
	020 kg/2.0 mV/V
	030 kg/2.0 mV/V
	050 kg/2.0 mV/V
	075 kg/2.0 mV/V
Nullpunkt unmontiert	< ±2 % vom Endwert
Ausgangssignal auf den Endwert	2.0 mV/V
bezogen	
Abweichung Ausgangssignal	±10.0 %
Ausgangssignal	Positiv auf Druck
Nichtlinearität	< ±0.03 % vom Endwert
Hysterese	< ±0.03 % vom Endwert
Wiederholbarkeit	< ±0.03 % vom Endwert
Creep (30 Min)	< ±0.03 % vom Endwert
Temperatureinfluss auf Endwert	±0.03 % FS /10°C
Temperatureinfluss auf Nullpunkt	±0.03 % FS /10°C


Elektrische Daten	
Ausgangssignal auf den Endwert bezogen	2.0 mV/V
Isolationswiderstand	≥ 5000 MΩ / 100 VDC
Eingangswiderstand	385 ± 5Ω
Ausgangswiderstand	350 ± 3Ω
Empfohlene Spannung	3 - 10 V

Materialien	
Sensor Grundkörper	Stahl
Kabel	PVC

Mechanische Daten			
Krafteinleitung	Innengewinde M8 x 1.25		
Überlast	150 % vom Endwert		
Bruchlast	200 % vom Endwert		
Elektrischer Anschluss	Anschlusskabel		
Kabellänge	Ø 5 mm x 3 m		
Steckertyp	Offene Litzen, Stecker auf Anfrage erhältlich		


Umgebungsdaten		
Umgebungstemperatur	-2080 °C	
Kompensierter Temperaturbereich	-1060 °C	
Schutzart	IP65	

Mechanische Abmessungen

Messbereich	Α	В	С	D	М
1075kg	63.5	50.8	12.7	19.1	M8 x 1.25

Anschlussbelegung

Bestellinformation

Der Kraftaufnehmer wird ohne Kalibrierzertifikat geliefert. Kalibrierzertifikat auf Anfrage erhältlich.

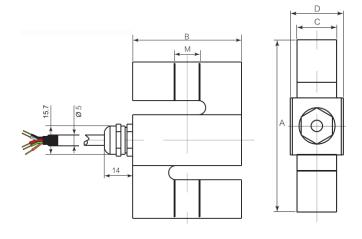
Detaillierte Bestellangaben siehe Seite 2.

76.2 x 50.8 x 25.4 mm

100 ... 500 kg

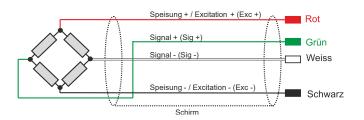
Spezifikationen

Performance	
Messbereich / Ausgangssignal	0100 kg/2.0 mV/V
	0200 kg/2.0 mV/V
	0250 kg/2.0 mV/V
	0300 kg/2.0 mV/V
	0500 kg/2.0 mV/V
Nullpunkt unmontiert	< ±2 % vom Endwert
Ausgangssignal auf den Endwert	2.0 mV/V
bezogen	
Abweichung Ausgangssignal	±10.0 %
Ausgangssignal	Positiv auf Druck
Nichtlinearität	< ±0.03 % vom Endwert
Hysterese	< ±0.03 % vom Endwert
Wiederholbarkeit	< ±0.03 % vom Endwert
Creep (30 Min)	< ±0.03 % vom Endwert
Temperatureinfluss auf Endwert	±0.03 % FS /10°C
Temperatureinfluss auf Nullpunkt	±0.03 % FS /10°C


Elektrische Daten	
Ausgangssignal auf den Endwert bezogen	2.0 mV/V
Isolationswiderstand	≥ 5000 MΩ / 100 VDC
Eingangswiderstand	385 ± 5Ω
Ausgangswiderstand	350 ± 3Ω
Empfohlene Spannung	3 - 10 V

Materialien	
Sensor Grundkörper	Stahl
Kabel	PVC

Mechanische Daten	
Krafteinleitung	Innengewinde M12 x 1.75
Überlast	150 % vom Endwert
Bruchlast	200 % vom Endwert
Elektrischer Anschluss	Anschlusskabel
Kabellänge	Ø 5 mm x 3 m
Steckertyp	Offene Litzen, Stecker auf Anfrage erhältlich


Umgebungsdaten			
Umgebungstemperatur	-2080 °C		
Kompensierter Temperaturbereich	-1060 °C		
Schutzart	IP65		

Mechanische Abmessungen

Messbereich	Α	В	С	D	М
100500kg	76.2	50.8	19.1	25.4	M12 x 1.75

Anschlussbelegung

Bestellinformation

Der Kraftaufnehmer wird ohne Kalibrierzertifikat geliefert. Kalibrierzertifikat auf Anfrage erhältlich.

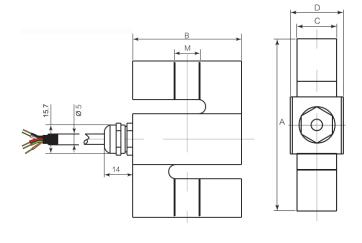
Detaillierte Bestellangaben siehe Seite 2.

76.2 x 50.8 x 25.4 mm

750 ... 1500 kg

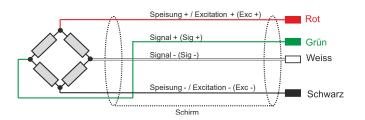
Spezifikationen

Performance				
Messbereich / Ausgangssignal	0750 kg/2.0 mV/V 01000 kg/2.0 mV/V 01500 kg/2.0 mV/V			
Nullpunkt unmontiert	< ±2 % vom Endwert			
Ausgangssignal auf den Endwert bezogen	2.0 mV/V			
Abweichung Ausgangssignal	±10.0 %			
Ausgangssignal	Positiv auf Druck			
Nichtlinearität	< ±0.03 % vom Endwert			
Hysterese	< ±0.03 % vom Endwert			
Wiederholbarkeit	< ±0.03 % vom Endwert			
Creep (30 Min)	< ±0.03 % vom Endwert			
Temperatureinfluss auf Endwert	±0.03 % FS /10°C			
Temperatureinfluss auf Nullpunkt	±0.03 % FS /10°C			


Elektrische Daten	
Ausgangssignal auf den Endwert bezogen	2.0 mV/V
Isolationswiderstand	≥ 5000 MΩ / 100 VDC
Eingangswiderstand	385 ± 5Ω
Ausgangswiderstand	350 ± 3Ω
Empfohlene Spannung	3 - 10 V

Materialien	
Sensor Grundkörper	Stahl
Kabel	PVC

Mechanische Daten		
Krafteinleitung	Innengewinde	
	M12 x 1.75	
Überlast	150 % vom Endwert	
Bruchlast	200 % vom Endwert	
Elektrischer Anschluss	Anschlusskabel	
Kabellänge	Ø 5 mm x 3 m	
Steckertyp	Offene Litzen, Stecker	
	auf Anfrage erhältlich	


Umgebungsdaten			
Umgebungstemperatur	-2080 °C		
Kompensierter Temperaturbereich	-1060 °C		
Schutzart	IP67		

Mechanische Abmessungen

Messbereich	Α	В	С	D	М
7501500kg	76.2	50.8	25.4	25.4	M12 x 1.75

Anschlussbelegung

Bestellinformation

Der Kraftaufnehmer wird ohne Kalibrierzertifikat geliefert. Kalibrierzertifikat auf Anfrage erhältlich.

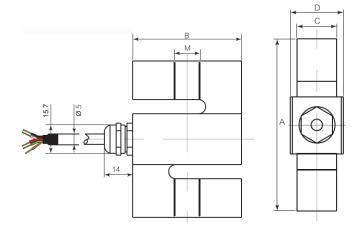
Detaillierte Bestellangaben siehe Seite 2.

108 x 76.2 x 25.4 mm

2000 ... 5000 kg

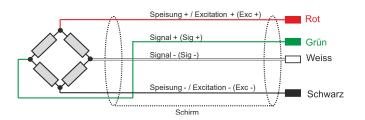
Spezifikationen

Performance	
Messbereich / Ausgangssignal	02000 kg/2.0 mV/V
	02500 kg/2.0 mV/V
	03000 kg/2.0 mV/V
	05000 kg/2.0 mV/V
Nullpunkt unmontiert	< ±2 % vom Endwert
Ausgangssignal auf den Endwert	2.0 mV/V
bezogen	
Abweichung Ausgangssignal	±10.0 %
Ausgangssignal	Positiv auf Druck
Nichtlinearität	< ±0.03 % vom Endwert
Hysterese	< ±0.03 % vom Endwert
Wiederholbarkeit	< ±0.03 % vom Endwert
Creep (30 Min)	< ±0.03 % vom Endwert
Temperatureinfluss auf Endwert	±0.03 % FS /10°C
Temperatureinfluss auf Nullpunkt	±0.03 % FS /10°C


Elektrische Daten	
Ausgangssignal auf den Endwert bezogen	2.0 mV/V
Isolationswiderstand	≥ 5000 MΩ / 100 VDC
Eingangswiderstand	385 ± 5Ω
Ausgangswiderstand	350 ± 3Ω
Empfohlene Spannung	3 - 10 V

Materialien	
Sensor Grundkörper	Stahl
Kabel	PVC

Mechanische Daten				
Krafteinleitung	Innengewinde			
	M18 x 1.5			
Überlast	150 % vom Endwert			
Bruchlast	200 % vom Endwert			
Elektrischer Anschluss	Anschlusskabel			
Kabellänge	Ø 5 mm x 3 m			
Steckertyp	Offene Litzen, Stecker auf Anfrage erhältlich			


Umgebungsdaten		
Umgebungstemperatur	-2080 °C	
Kompensierter Temperaturbereich	-1060 °C	
Schutzart	IP67	

Mechanische Abmessungen

Messbereich	Α	В	С	D	М
20005000kg	108	76.2	25.4	25.4	M18 x 1.5

Anschlussbelegung

Bestellinformation

Der Kraftaufnehmer wird ohne Kalibrierzertifikat geliefert. Kalibrierzertifikat auf Anfrage erhältlich.

Detaillierte Bestellangaben siehe Seite 2.

Definition der Genauigkeitsangabe

Bei Wägezellen gibt es folgende Punkte bezüglich der Genauigkeit zu beachten:

Linearität, Wiederholbarkeit und Hysterese (kombinierter Fehler)
 Die Linearität, Wiederholbarkeit und Hysterese spezifiziert die Messabweichung im Vergleich zur idealen Kennlinie.
 Diese maximale Messabweichung wird auf den Endwert bezogen angegeben. D.h. zum Beispiel eine Ungenauigkeit von 0.09 % FS entspricht bei einem Kraftsensor mit einem Messbereich von 0...500 kg einer maximalen Messabweichung von 0.45 kg über den gesamten Messbereich.

2. Empfindlichkeit

Im Datenblatt wird eine Empfindlichkeit der Sensoren (2.0 mV/V) angegeben. Die Empfindlichkeit ist jedoch nicht immer exakt identisch. Aus diesem Grund wird die Abweichung der Empfindlichkeit spezifiziert.